Skip to content
SIE

Models

SIE supports 80+ encode models across dense, sparse, multi-vector, and multimodal categories. Model performance varies by task. Run mise run eval <model> -t <task> to benchmark on your data.


ModelDimsMax LengthLanguagesNotes
BAAI/bge-m310248192100+Also supports sparse, multivector
Alibaba-NLP/gte-Qwen2-1.5B-instruct153632768MultilingualLong context, instruction
Alibaba-NLP/gte-Qwen2-7B-instruct358432000MultilingualLargest quality
Alibaba-NLP/gte-multilingual-base768819250+Efficient multilingual
NovaSearch/stella_en_400M_v51024512EnglishBalanced
NovaSearch/stella_en_1.5B_v51024512EnglishHigh quality
ModelDimsMax LengthNotes
intfloat/e5-small-v2384512Fast, small
intfloat/e5-base-v2768512Balanced
intfloat/e5-large-v21024512High quality
intfloat/multilingual-e5-large1024512Multilingual
intfloat/multilingual-e5-large-instruct1024512Instruction-tuned
intfloat/e5-mistral-7b-instruct40964096LLM-based
ModelDimsMax LengthNotes
sentence-transformers/all-MiniLM-L6-v2384256Fast baseline
ModelDimsMax LengthNotes
nvidia/NV-Embed-v2409632768NVIDIA optimized
nvidia/llama-embed-nemotron-8b40968192LLM-based
Salesforce/SFR-Embedding-Mistral40964096Salesforce
Salesforce/SFR-Embedding-2_R40968192Latest version
GritLM/GritLM-7B40968192Generative + embedding
Linq-AI-Research/Linq-Embed-Mistral409632768Long context
google/embeddinggemma-300m7682048Gemma-based
ModelDimsMax LengthNotes
Qwen/Qwen3-Embedding-0.6B102432768Small, fast
Qwen/Qwen3-Embedding-4B256032768High quality

ModelVocab SizeMax LengthNotes
BAAI/bge-m32500028192Multi-output (also dense)
naver/splade-v330522512High-quality sparse
naver/splade-cocondenser-selfdistil30522512Balanced
prithivida/Splade_PP_en_v230522256English
rasyosef/splade-mini30522128Small
ibm-granite/granite-embedding-30m-sparse30522512IBM
ModelNotes
opensearch-project/opensearch-neural-sparse-encoding-v1Original
opensearch-project/opensearch-neural-sparse-encoding-v2-distillDistilled
opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distillDocument-side
opensearch-project/opensearch-neural-sparse-encoding-doc-v2-miniSmall
opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distillV3 distilled
opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gteGTE-based

ModelToken DimMax LengthNotes
jinaai/jina-colbert-v21288192Long context
answerdotai/answerai-colbert-small-v1128512Fast, small
colbert-ir/colbertv2.0128512Original ColBERT
mixedbread-ai/mxbai-colbert-large-v11024512Large dimension
mixedbread-ai/mxbai-edge-colbert-v0-32m128512Edge/mobile
lightonai/GTE-ModernColBERT-v11288192Modern architecture
lightonai/Reason-ModernColBERT1288192Reasoning-focused
nvidia/llama-nemoretriever-colembed-3b-v11024512NVIDIA

ModelDimsResolutionNotes
openai/clip-vit-base-patch32512224Fast baseline
openai/clip-vit-large-patch14768224Higher quality
laion/CLIP-ViT-B-32-laion2B-s34B-b79K512224LAION trained
laion/CLIP-ViT-H-14-laion2B-s32B-b79K1024224Large
ModelDimsResolutionNotes
google/siglip-so400m-patch14-2241152224Fast
google/siglip-so400m-patch14-3841152384Higher resolution
ModelToken DimResolutionNotes
vidore/colpali-v1.3-hf1281024Document pages
vidore/colqwen2.5-v0.21281024Qwen-based

Models are grouped into bundles based on dependency compatibility:

BundleModelsNotes
defaultMost modelsStandard dependencies
legacyOlder transformersCompatibility mode
gte-qwen2GTE-Qwen2 modelsQwen dependencies
sglangLLM-based modelsSGLang runtime
florence2Florence-2Vision dependencies

Start with a specific bundle:

Terminal window
# Docker (recommended)
docker run -p 8080:8080 ghcr.io/superlinked/sie:default
# Or with GPU
docker run --gpus all -p 8080:8080 ghcr.io/superlinked/sie:default
from sie_sdk import SIEClient
from sie_sdk.types import Item
client = SIEClient("http://localhost:8080")
# List available models
models = client.list_models()
for model in models:
print(f"{model.name}: {model.dims} dims, loaded={model.loaded}")
# Use any model from the catalog
result = client.encode("BAAI/bge-m3", Item(text="Hello world"))

See Adding Models for configuring new models.

  • Evals - benchmark models on your tasks